

Parallel Discovery of Therapeutic Antibodies and Novel Targets Using the Antibody Repertoires of Resilient Individuals

Our vision: To use the power of the human immune system to discover new medicines and diagnostics

Discovering and developing protective, patient-originated therapeutic antibodies

Alchemab concept

WE SEQUENCE

WE DISCOVER

We identify especially resilient individuals – and learn how they overcome or resist disease

We sequence B cells from the resilient individuals and identify antibodies with similar properties

We discover the binding targets of the antibodies, understand their protective properties and develop candidates that replicate the protective effect

Novel Antibody Therapeutic

Patient-originated, physiologically validated therapeutics

Our therapeutic antibodies are physiologically validated, increasing the likelihood that the targets are critical disease modifiers

How do we think about resilience?

Patients who survive advanced cancer

Patients progressing unusually slowly with neuro-degenerative disorders

People who survive grievous, deadly infectious disease

Long-lived, healthy individuals

Humans benefit from naturally-occurring protective autoantibodies in many diseases

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

A human-derived antibody targets misfolded SOD1 and ameliorates motor symptoms in mouse models of amyotrophic lateral sclerosis

Marcel Maier1*, Tobias Welt2*, Fabian Wirth1, Fabio Montrasio1, Daniel Preisig2, Jordan McAfoose², Fernando G. Vieira³, Luka Kulic², Claudia Späni², Thilo Stehle⁴, Steve Perrin³, Markus Weber⁵, Christoph Hock^{1,2}, Roger M. Nitsch^{1,2}, Jan Grimm^{1†}

Cancer Cell

Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer

- Three populations of intratumoral B and plasma cells identified by scRNA-seq in NSCLC
- Plasma cells show the strongest predictive association with overall survival to PD-L1 blockade
- Plasma cell benefits are independent of intratumoral CD8 T cells and PD-L1 expression
- B and plasma cells are present in tertiary lymphoid structures in NSCLC tumors

Breast Cancer Res Treat (2016) 157:55-63 DOI 10.1007/s10549-016-3801-4

Article

Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer

Yukiko Tabuchi¹ · Masafumi Shimoda¹ · Naofumi Kagara¹ · Yasuto Naoi¹ · Tomonori Tanei¹ · Atsushi Shimomura¹ · Kenzo Shimazu¹ · Seung Jin Kim¹ · Shinzaburo Noguchi¹

We collaborate with a broad and growing network of institutions

Platform enabling collaborations

Our platform has generated numerous program opportunities across a variety of diseases

How do we do what we do?

Discovery process powered by advanced sequencing, big data, and deep learning

Convergent autoantibody sequences provide the starting point for discovery

Population B Cell Repertoire Analysis

Sequences of diseasefree population

Sequences of resilient patients

Sequences of disease progressors

10's-100's of Individuals; Millions of BCR sequences

Convergence

Shared antibodies that do not occur in controls or progressors

Convergence reflects similar antibodies that are shared among members of a cohort and directed against a common antigen

Convergence is rare, and therefore meaningful

The result is target and pathway agnostic therapeutics

We have a unique deep learning enabled process to express functional antibodies

Covid-19 study provides proof-of-concept

Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures

Jacob D. Galson 1*, Sebastian Schaetzle 1, Rachael J. M. Bashford-Rogers 1,2, Matthew I. J. Raybould³, Aleksandr Kovaltsuk³, Gavin J. Kilpatrick¹, Ralph Minter¹, Donna K. Finch¹, Jorge Dias¹, Louisa K. James⁴, Gavin Thomas⁴, Wing-Yiu Jason Lee⁴, Jason Betley⁵, Olivia Cavlan¹, Alex Leech¹, Charlotte M. Deane³, Joan Seoane⁶, Carlos Caldas 7, Daniel J. Pennington 4, Paul Pfeffer 4 and Jane Osbourn 1

COVID

Potent multi-strain covid neutralizing antibodies identified

Alchemab

Antibody

Alchemab's growing Data Cube can stratify patients into diseases and disease-subtypes

Disease stratification example

Alchemab data demonstrates that antibody convergence is specific to disease cohorts, suggesting that separation between diseases is possible**

Individual patient samples

Representation learning could uncover unique patient signatures

- Discovers hidden patterns in the data
- Alchemab's AntiBERTa 'learns the language of antibodies'
- It also learns additional information we cannot yet interpret with our current state of biological knowledge

We apply this to our resilient patient antibody data sets and believe that it could be a transformative patient stratification tool

Oncology – Case study

Convergence: Breadth of opportunities

Convergence between patients Resilient Patient 2 Resilient Patient 1 Resilient Patient 3 Healthy controls not occur in healthy controls

Shared antibodies may indicate protection at the population level

Convergence within patient

Related antibodies suggest active selection against important targets

Convergence between tumor and periphery

Tumor-surveilling antibodies may identify targets active in the TME

Pancreatic cancer collaborations to date

RNA Plasma/Serum	Tumour Tissue / B cells					
Collaborator Type		Donors (#)	Resiliency definition			
UNIVERSITY OF OXFORD		28	Significant B cell infiltration			
CENTRE LEON BERARD		31	LTS (5+ years)			
Case study		36	LTS (7+ years)			
Barts Cancer Institute Queen Mary University of London		30	LTS (5+ years)			
Vall d'Hebron Institut de Recerca VHIR		40	LTS (5+ years)			

Pancreatic cancer cohort

All PDAC patients have undergone resection

Early analysis shows high convergence in resilient group

Convergent clonotypes Total: 135,554

There are many more Resilient-convergent than Progressor-convergent clonotypes

Class-switch isotype distribution

Mean CDR3 length

Two large clonal expansions found in resilient subjects

SU859-Resilient

SU857-Resilient

16% repertoire

Highly convergent resilient clonotypes found in multiple individuals

10 clonotypes found with exceptional convergence among resilient individuals **which were not found in progressors**, and evidence for disease relevance:

Length-independent super-convergence
 Low probability of generation & rare in healthy controls
 Predominantly IgG1

CLUSTER SIZE	CONVERGENCE LEVEL (OUT OF 12)	CDR3 LENGTH	MUTATIONS	GENERATION PROBABILITY	PROP. IN HEALTHY CONTROL	PREVALENT ISOTYPE
151	8	20	1.58	4.35E-12	0.060	IGHG1
40	8	20*	1.65	9.34E-12	0.050	IGHG1
43	8	19*	1.35	4.63E-20	0.186	IGHG1
73	7	16	1.51	2.13E-13	0.055	IGHG1
42	5	16	2.07	1.29E-12	0	IGHG1
73	5	15*	1.41	7.42E-11	0.082	IGHG1
33	5	14*	1.52	7.69E-11	0	IGHG1
17	5	13	1.18	1.14E-11	0.059	IGHG1
16	6	13	17.63	1.01E-11	0	IGHM
22	5	11	25.59	5.20E-10	0.091	IGHA1

Mining the Alchemab Data Cube

Mining PDAC datasets for convergence

Other Alchemab PDAC studies

- Alchemab pilot PDAC study comparing high and low B cell infiltrate groups
- Single-cell sequencing from blood and tumor

Two matches to PDAC case study demonstrating convergence from pilot

External datasets of interest

- Triple Negative breast cancer study from Harris et al. investigating prognostic B cell profiles
- Single-cell sequencing from tumor samples

 Two matches to PDAC case study demonstrating high levels of convergence between different solid tumor studies

Homology to approved KDR mAb translates to target binding

Ramucirumab is a VEGFR2 (KDR) antibody, approved for treatment of solid tumors

ARTICLES | VOLUME 383, ISSUE 9911, P31-39, JANUARY 04, 2014

Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial

Dr Prof Charles S Fuchs, MD 🙏 🖾 Jiri Tomasek, MD Prof Cho Jae Yong, MD Filip Dumitru, MD Rodolfo Passalacqua, MD Prof Chanchal Goswami, MD et al. Show all authors Show footnotes

Published: October 03, 2013 • DOI: https://doi.org/10.1016/S0140-6736(13)61719-5 •

One of Alchemab's convergent clusters is highly homologous to ramucirumab

 Assay shows binding for multiple antibodies from one clonotype to KDR

Convergence analysis could be the next wave of antibody generation

We have proven the concept and we are expanding our capabilities

Antibody Therapeutics

Unique resilientconvergent antibodies identified from PDAC cohort

Antibodies with sequences highly similar to known, efficacious antibodies identified

Target Identification

Antibodies undergoing target deconvolution

Patient Stratification

Early evidence of ability to stratify patients into disease sub-groups

Alchemab Discovery

World's most advanced machine learning model evaluating B cell repertoires demonstrating potential to identify new biology

